Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
JCI Insight ; 6(18)2021 09 22.
Article in English | MEDLINE | ID: covidwho-1467778

ABSTRACT

The importance of the adaptive T cell response in the control and resolution of viral infection has been well established. However, the nature of T cell-mediated viral control mechanisms in life-threatening stages of COVID-19 has yet to be determined. The aim of the present study was to determine the function and phenotype of T cell populations associated with survival or death of patients with COVID-19 in intensive care as a result of phenotypic and functional profiling by mass cytometry. Increased frequencies of circulating, polyfunctional CD4+CXCR5+HLA-DR+ stem cell memory T cells (Tscms) and decreased proportions of granzyme B-expressing and perforin-expressing effector memory T cells were detected in recovered and deceased patients, respectively. The higher abundance of polyfunctional PD-L1+CXCR3+CD8+ effector T cells (Teffs), CXCR5+HLA-DR+ Tscms, and anti-nucleocapsid (anti-NC) cytokine-producing T cells permitted us to differentiate between recovered and deceased patients. The results from a principal component analysis show an imbalance in the T cell compartment that allowed for the separation of recovered and deceased patients. The paucity of circulating PD-L1+CXCR3+CD8+ Teffs and NC-specific CD8+ T cells accurately forecasts fatal disease outcome. This study provides insight into the nature of the T cell populations involved in the control of COVID-19 and therefore might impact T cell-based vaccine designs for this infectious disease.


Subject(s)
B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/immunology , CD8 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunity, Cellular , Receptors, CXCR3/immunology , Adult , COVID-19/mortality , COVID-19/pathology , Epitopes, T-Lymphocyte/immunology , Female , France/epidemiology , Humans , Immunologic Memory , Lymphocyte Activation , Male , SARS-CoV-2 , Survival Rate/trends
2.
Med (N Y) ; 2(9): 1072-1092.e7, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1404796

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children is generally milder than in adults, but a proportion of cases result in hyperinflammatory conditions often including myocarditis. METHODS: To better understand these cases, we applied a multiparametric approach to the study of blood cells of 56 children hospitalized with suspicion of SARS-CoV-2 infection. Plasma cytokine and chemokine levels and blood cellular composition were measured, alongside gene expression at the bulk and single-cell levels. FINDINGS: The most severe forms of multisystem inflammatory syndrome in children (MIS-C) related to SARS-CoV-2 that resulted in myocarditis were characterized by elevated levels of pro-angiogenesis cytokines and several chemokines. Single-cell transcriptomics analyses identified a unique monocyte/dendritic cell gene signature that correlated with the occurrence of severe myocarditis characterized by sustained nuclear factor κB (NF-κB) activity and tumor necrosis factor alpha (TNF-α) signaling and associated with decreased gene expression of NF-κB inhibitors. We also found a weak response to type I and type II interferons, hyperinflammation, and response to oxidative stress related to increased HIF-1α and Vascular endothelial growth factor (VEGF) signaling. CONCLUSIONS: These results provide potential for a better understanding of disease pathophysiology. FUNDING: Agence National de la Recherche (Institut Hospitalo-Universitaire Imagine, grant ANR-10-IAHU-01; Recherche Hospitalo-Universitaire, grant ANR-18-RHUS-0010; Laboratoire d'Excellence ''Milieu Intérieur," grant ANR-10-LABX-69-01; ANR-flash Covid19 "AIROCovid" and "CoVarImm"), Institut National de la Santé et de la Recherche Médicale (INSERM), and the "URGENCE COVID-19" fundraising campaign of Institut Pasteur.


Subject(s)
COVID-19 , Myocarditis , Adult , COVID-19/complications , Chemokines , Child , Cytokines , Dendritic Cells , Humans , Monocytes , NF-kappa B , SARS-CoV-2/genetics , Systemic Inflammatory Response Syndrome , Vascular Endothelial Growth Factor A
3.
Sci Adv ; 7(34)2021 08.
Article in English | MEDLINE | ID: covidwho-1365116

ABSTRACT

The COVID-19 pandemic has spread worldwide, yet the role of antiviral T cell immunity during infection and the contribution of immune checkpoints remain unclear. By prospectively following a cohort of 292 patients with melanoma, half of which treated with immune checkpoint inhibitors (ICIs), we identified 15 patients with acute or convalescent COVID-19 and investigated their transcriptomic, proteomic, and cellular profiles. We found that ICI treatment was not associated with severe COVID-19 and did not alter the induction of inflammatory and type I interferon responses. In-depth phenotyping demonstrated expansion of CD8 effector memory T cells, enhanced T cell activation, and impaired plasmablast induction in ICI-treated COVID-19 patients. The evaluation of specific adaptive immunity in convalescent patients showed higher spike (S), nucleoprotein (N), and membrane (M) antigen-specific T cell responses and similar induction of spike-specific antibody responses. Our findings provide evidence that ICI during COVID-19 enhanced T cell immunity without exacerbating inflammation.


Subject(s)
COVID-19/immunology , Immune Checkpoint Inhibitors/immunology , Melanoma/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adaptive Immunity/drug effects , Adaptive Immunity/immunology , Aged , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/complications , COVID-19/virology , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunologic Memory/drug effects , Immunologic Memory/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Male , Melanoma/complications , Melanoma/drug therapy , Middle Aged , Prospective Studies , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/virology
4.
Science ; 370(6515)2020 10 23.
Article in English | MEDLINE | ID: covidwho-796722

ABSTRACT

Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.


Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/immunology , Interferon Type I/immunology , Loss of Function Mutation , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Asymptomatic Infections , Betacoronavirus , COVID-19 , Child , Child, Preschool , Female , Genetic Loci , Genetic Predisposition to Disease , Humans , Infant , Interferon Regulatory Factor-7/deficiency , Interferon Regulatory Factor-7/genetics , Male , Middle Aged , Pandemics , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2 , Toll-Like Receptor 3/deficiency , Toll-Like Receptor 3/genetics , Young Adult
5.
Science ; 369(6504): 718-724, 2020 08 07.
Article in English | MEDLINE | ID: covidwho-641396

ABSTRACT

Coronavirus disease 2019 (COVID-19) is characterized by distinct patterns of disease progression that suggest diverse host immune responses. We performed an integrated immune analysis on a cohort of 50 COVID-19 patients with various disease severity. A distinct phenotype was observed in severe and critical patients, consisting of a highly impaired interferon (IFN) type I response (characterized by no IFN-ß and low IFN-α production and activity), which was associated with a persistent blood viral load and an exacerbated inflammatory response. Inflammation was partially driven by the transcriptional factor nuclear factor-κB and characterized by increased tumor necrosis factor-α and interleukin-6 production and signaling. These data suggest that type I IFN deficiency in the blood could be a hallmark of severe COVID-19 and provide a rationale for combined therapeutic approaches.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Interferon alpha-2/metabolism , Interferon-alpha/metabolism , Interferon-beta/metabolism , Pneumonia, Viral/immunology , Adult , Aged , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/virology , Critical Illness , Cross-Sectional Studies , Female , Gene Expression Profiling , Humans , Immunity, Innate , Inflammation , Interleukin-6/metabolism , Male , Middle Aged , NF-kappa B/metabolism , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Signal Transduction , T-Lymphocyte Subsets/immunology , Tumor Necrosis Factor-alpha/metabolism , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL